
Journal of Computational Physics 229 (2010) 5011–5021
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A new surface-tension formulation for multi-phase SPH using
a reproducing divergence approximation

S. Adami *, X.Y. Hu, N.A. Adams
Institute of Aerodynamics, Technische Universität München, 85748 Garching, Germany
a r t i c l e i n f o

Article history:
Received 26 June 2009
Received in revised form 5 February 2010
Accepted 16 March 2010
Available online 18 March 2010

Keywords:
Multi-phase flows
Surface tension
Particle method
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.03.022

* Corresponding author.
E-mail address: stefan.adami@aer.mw.tum.de (S
a b s t r a c t

In this paper, we propose a new surface-tension formulation for multi-phase smoothed
particle hydrodynamics (SPH). To obtain a stable and accurate scheme for surface curva-
ture, a new reproducing divergence approximation without the need for a matrix inversion
is derived. Furthermore, we introduce a density-weighted color-gradient formulation to
reflect the reality of an asymmetrically distributed surface-tension force. We validate
our method with analytic solutions and demonstrate convergence for different cases. Fur-
thermore, we show that our formulation can handle phase interfaces with density and vis-
cosity ratios of up to 1000 and 100, respectively. Finally, complex three-dimensional
simulations including breakup of an interface demonstrate the capabilities of our method.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Surface-tension effects are important for many multi-phase flow phenomena. Especially when the characteristic length
scales of the investigated system are sufficiently small, the surface-tension forces become relevant compared to inertia ef-
fects and affect the flow field. Many industrial applications include multi-phase flow systems and encounter problems such
as drop deformation and breakup in rather simple shear flows, wetting effects or Marangoni-force driven motion of inter-
faces. Therefore the accurate simulation of flows with complex interfaces is an interesting problem with practical relevance
and motivates our work.

There are mainly two approaches for the numerical solution of the governing equations of the flow system, either using a
grid-based method with a Eulerian formulation or a meshless method from a Lagrangian point of view. In this paper, we employ
smoothed particle hydrodynamics (SPH) [10] due to its conceptual advantages for modeling of complex multi-phase flows.
With this Lagrangian particle method, material interfaces are represented self-adaptively without the need for complex inter-
face-capturing or front-tracking algorithms. By the use of a color function each particle is assigned to a single phase throughout
a simulation. In doing so, interfaces can easily be followed and strong deformations and even breakup can be handled.

With SPH there are generally two ways to model the surface-tension effect: one is based on microscopic inter-phase
attractive potentials [13,16]; the other one is based on a macroscopic surface-tension model [11,6]. Although the implemen-
tation of an inter-phase attractive potential is straightforward, one of the difficulties is that the resulting surface tension
needs to be calibrated. Furthermore, with given parameters, the surface tension is resolution-dependent and does not con-
verge to a fixed value with increasing resolution. On the other hand, the approach using a macroscopic surface-tension mod-
el recovers the prescribed surface tension and converges to the exact value with increasing resolution. Usually, this model is
implemented in SPH by the continuum surface force (CSF) method of Brackbill et al. [1]. In this method, a color function is
used to describe different phases, and the interface is defined as a finite transitional band, where the color gradient does not
vanish. Within this band, the surface tension is approximated as a continuous force.
. All rights reserved.
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The surface-tension model for multi-phase SPH of Morris [11] uses a smoothed color function and has difficulties in pre-
dicting the surface curvature, i.e. the divergence of the unit interface-normal direction. One difficulty arises from the fact,
that the standard SPH approximation of the divergence requires full support of the kernel function, which cannot be satisfied
within the transitional band. Another problem is the color gradient near the edge of the transition band, which has small
magnitude and may lead to an erroneous direction. In the work of Hu and Adams [6] a sharp color function with a discon-
tinuity at the interface is used directly. The calculation of the surface curvature is circumvented by introducing a surface-
stress tensor which only depends on the color gradient. Furthermore, since the magnitude of the surface-stress tensor is pro-
portional to the magnitude of the color gradient, the contribution of a small color gradient vanishes hence does not introduce
numerical difficulties.

In realistic configurations the surface force may not be distributed uniformly on each side of the interface. For example at
an air–water interface, the surface force is dominantly acting on the water side. In all current approaches the surface force
modeled by SPH is assumed to be distributed uniformly across the interface. Not only being nonphysical, this assumption can
also introduce numerical problems. For example, in an air–water interface flow the surface force on the air side can introduce
an acceleration about 1000 times higher than that on the water side. Consequentially, the stiffness of the equation of motion
increases dramatically, and the step-size for time integration is strongly limited.

In this work, we revisit the formulation of surface curvature based on a sharp color function. To obtain a stable and accu-
rate surface-curvature calculation without full support of the kernel function, a new reproducing divergence approximation
is derived. Unlike previous formulations, which calculate the divergence from reproducing gradient approximations, the new
approximation does not require a matrix inversion. Furthermore, we have not found notable effects caused by the errors due
to small color-gradient values at the fringes of the transitional band. To reflect the reality of non-uniformly distributed sur-
face forces, a new density-weighted color-gradient formulation is used. Several numerical tests on static water drops, oscil-
lating drops, drop deformation and splitting in shear flow are carried out to demonstrate the potential of the present method.
The results show that we achieve a comparable accuracy as with the formulation of Hu and Adams [6]. But as we can relax
the dominating surface-tension based time-step criterion in the lighter phase, the computational effort of our new formu-
lation is significantly smaller, especially for problems with large density ratios.

2. Governing equations

The isothermal Navier–Stokes equations are solved in a moving Lagrangian frame
dq
dt
¼ �qr � v; ð1Þ

dv
dt
¼ gþ 1

q
½�rpþ FðmÞ þ FðsÞ�; ð2Þ
where q; p; v and g are material density, pressure, velocity and body force, respectively. FðmÞ denotes the viscous force and
FðsÞ is the interfacial surface force.

With SPH incompressible flow is usually modeled by the weakly-compressible approach in which a stiff EOS is used to
relate the pressure to the density, i.e.
p ¼ p0
q
q0

� �c

� 1
� �

þ v; ð3Þ
with c ¼ 7, the reference pressure p0, the reference density q0 and the background pressure v. These parameters and the
artificial speed of sound are chosen following a scale analysis presented by Morris et al. [12] which limits the threshold
of the admissible density variation usually to 1%.

The viscous force FðmÞ simplifies to the incompressible formulation
FðmÞ ¼ gr2v; ð4Þ
where g is the dynamic viscosity. Following the CSF model of Brackbill et al. [1] for constant surface tension, the surface force
can be expressed as a volumetric force using the surface delta function dR by
FðsÞ ¼ �ajndR: ð5Þ
The capillary force ajndR is calculated with the curvature j, the normal vector of the interface n and the surface-delta func-
tion dR. This expression describes the pressure-jump condition normal to an interface. In this work we focus only on the case
where the interfacial surface tension is constant. Hence, the Marangoni forcersadR has no influence on the interface dynam-
ics since the interfacial gradient of the surface tension rsa is zero.

3. Numerical method

The governing equations are discretized by the multi-phase SPH method presented in Hu and Adams [6]. Each particle
represents a Lagrangian element of fluid, carrying all local phase properties. With updating the positions of the particles this
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method accounts for advection as the governing equations are formulated in terms of material derivatives. For implemen-
tation we employ the Parallel Particle-Mesh (PPM) Library [15] which allows for large-scale particle simulations on parallel
computer architectures.

3.1. Multi-phase flow solver

According to Hu and Adams [6] we calculate the density of a particle i at each time-step from a summation over all neigh-
boring particles j
qi ¼ mi

X
j

Wij ¼
mi

Vi
: ð6Þ
Here, mi denotes the particle mass, Wij ¼Wðri � rj;hÞ is a kernel function with smoothing length h, and Vi is the volume of
particle i. This summation allows for density discontinuities and conserves mass exactly.

The interpolation kernel function W can be any function which satisfies
Z
Wðr; hÞdr ¼ 1 ð7Þ
and has the Dirac delta-function property
lim
h!0
¼Wðr; hÞ ¼ dðrÞ: ð8Þ
Furthermore, according to Monaghan [10] a suitable kernel function should also have compact support to allow for numer-
ically efficient approximations of the field quantities and gradients. Here, we use the quintic spline function presented by
Morris et al. [12] with a compact support of 3h. This kernel satisfies the above mentioned criteria, and Hongbin and Xin
[5] showed that among 10 proposed kernels the quintic spline function or the Gaussian function are favorable in terms of
computational accuracy.

The pressure term in the momentum equation is approximated as
dvðpÞi

dt
¼ � 1

qi
rpi ¼ �

1
mi

X
j

V2
i þ V2

j

� �
~pij
@W
@rij

eij; ð9Þ
with the weight-function gradient @W
@rij

eij ¼ rWðri � rjÞ and the inter-particle pressure
~pij ¼
qipj þ qjpi

qi þ qj
: ð10Þ
In the case of interacting particles of the same phase this form of ~pij recovers the simple midpoint-averaged pressure be-
tween the two particles. But when two particles of different phases interact, the density-weighted inter-particle pressure
from Eq. (10) ensures that rp=q is continuous even for a discontinuous density field, see [8].

The viscous force is derived from the inter-particle-averaged shear stress with a combined viscosity. A simplification for
incompressible flows gives
dvðmÞi

dt
¼ mir2vi ¼

1
mi

X
j

2gigj

gi þ gj
V2

i þ V2
j

� �vij

rij

@W
@rij

; ð11Þ
where mi ¼ gi=qi is the local kinematic viscosity of particle i; vij ¼ vi � vj is the relative velocity of particle i and j and
rij ¼ jri � rjj is the distance of the two particles. This form of the viscous force conserves linear momentum. Angular conser-
vation can be achieved using other formulations such as presented by Hu and Adams [7].

To distinguish between particles of different phases we use integer identifiers. Without a phase transition model this
identifier is constant for a particle i during the entire simulation and is advected with the flow field. Introducing special inter-
actions between particles of different phases, interface effects are incorporated within our method adaptively without the
need of special interface reconstruction schemes. Therefore we can handle arbitrary interface shapes as well as breakup
or merging of phases.

To calculate surface-tension forces between particles of different phases we introduce a color function c as
ck
l ¼

1; if the kth particle does not belong to the phase of particle l;

0; if the kth particle belongs to the phase of particle l:

�
ð12Þ
This color function has a unit-jump at a phase interface. Consequently, the gradient of the color function has a delta-func-
tion-like distribution and gives an approximation of the surface-delta function dR in Eq. (5). Furthermore, the normal direc-
tion at the interface can be obtained from the color gradient by
n ¼ rc
jrcj : ð13Þ
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To further illustrate the transition region with a non-zero color gradient and the normal direction, Fig. 1 shows a sketch of
the particles near an interface with the surface-delta function dR.

In this work, we do not use the color-gradient formulation of Hu and Adams [6], but introduce a new density-weighted
summation. Physically, at an air–water interface the surface-tension forces in the liquid phase are much more prominent
than those in the gas phase. Consequently, the interfacial motion is mainly driven by the water phase. Reflecting this behav-
ior, we formulate the gradient of the color function as
Fig. 2.
qi=qj �
rci ¼
1
Vi

X
j

½V2
i þ V2

j �~cij
@W
@rij

eij ð14Þ
using the inter-particle average
~cij ¼
qj

qi þ qj
ci

i þ
qi

qi þ qj
ci

j: ð15Þ
Note that for a density ratio Uq ¼ q1=q2 ¼ 1 between the two phases, this expression is equal to the midpoint average of
two particles i and j of Hu and Adams [6]. Fig. 2(a) shows the situation when two particles of different phase but with the
same density interact. Here, the surface-delta function is symmetric since ~cij ¼ ~cji ¼ 0:5. For density rations Uq different from
one the density-weighted inter-particle average Eq. (15) leads to a discontinuous color gradient as shown in Fig. 2(b).

It is important to note, that with the assumption of incompressibility of both phases and given the fact that ~cij þ ~cji ¼ 1,
this new color gradient distribution maintains the property
Z þ1

�1
dRðrÞdr ¼

Z þ1

�1
jrcðrÞjdr; ð16Þ
thus we can replace the surface-delta function in the surface-force term, Eq. (5), with the weighted color gradient, Eq. (14). In
doing so, the resulting surface-tension force distribution along the interface is physically more sensible than for previous
approaches.

To calculate the interface curvature within the transition band, we present a new reproducing divergence approximation
without the need for the full support of the kernel function to be contained in the transition band. Starting from a Taylor
series of a continuous vector field u about the ith particle, we multiply the equation with the gradient of the kernel function
Fig. 1. Sketch of the transition band at an interface with the surface delta function dR , the normal n and particles of two different phases.

Sketch of the color function and surface-delta function between two particles i and j of different phases with density ratio (a) qi=qj ¼ 1 and (b)
1.
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and integrate over the entire domain. Neglecting second and higher order terms, we obtain the summation form of the cor-
rected gradient as
rui ¼
X

j

uji �rWðrjiÞVj

" # X
j

rji �rWðrjiÞVj

" #�1

: ð17Þ
This formulation is very similar to the reproducing gradient approximation of Chen et al. [2]. One way to obtain the repro-
ducing divergence approximation is to take the trace of Eq. (17). But since the denominator is a d� d matrix, where d is the
number of spatial dimensions, this matrix must first be constructed and then inverted. To avoid this additional computa-
tional work, we further approximate the denominator of the formulation given above by two identities presented in Español
and Revenga [3]
Z

r�rWðrÞdr ¼ �I;
Z

r � rWðrÞdr ¼ �d ð18Þ
with I being the unit matrix, as
X
j

rji �rWðrjiÞVj �
I
d

X
j

rji � rWðrjiÞVj

 !
: ð19Þ
Combining Eqs. (17) and (19) and taking the trace, we find that the approximated divergence can be written as
r �ui ¼ d

P
juij � eij

@W
@rij

V jP
jrij

@W
@rij

V j
: ð20Þ
Now only two simple summations are required to approximate the divergence for a particle i. Furthermore, for a linear field
u ¼ Ar with A being a constant, Eq. (20) gives Ad, hence reproduces the divergence of a linear field. Note, that Eq. (20) repro-
duces the divergence even when there is no full support of the kernel function of a particle contained within the transition band.

Using the above formulation to calculate the curvature of the interface, i.e. the divergence of the interface-normal direc-
tion, we finally obtain the acceleration of an interface particle by surface tension as
dvðsÞi

dt
¼ � ai

mi
jirci: ð21Þ
Unlike the formulation in Hu and Adams [6] Eq. (21) takes effect as a body force, hence does not exactly conserve the total
momentum of the system. Note, that when the density ratio Uq at the interface is large, according to Eq. (14) the surface
force on the heavier phase is Uq-times of that on the lighter phase, thus both phases obtain accelerations with the same
magnitude.

3.2. Time-step criteria

The equations presented above are integrated in time with the velocity Verlet scheme. For stability reasons the maximum
time-step is chosen based on several time-step criteria [10,18]. Within the weakly-compressible SPH formulation, the time-
step must satisfy the CFL-condition based on the maximum artificial sound speed and the maximum flow speed
Dt 6 0:25
h

cmax þ jumaxj
; ð22Þ
the viscous condition
Dt 6 0:125
h2

m
; ð23Þ
the body force condition
Dt 6 0:25
h
jgj

� �1=2

; ð24Þ
and the surface-tension condition
Dt 6 0:25
qh3

2pa

 !1=2

: ð25Þ
For satisfying all conditions the global time-step is taken as minimum of Eqs. (22)–(25). Note that the surface-tension
condition for the time-step constraint is based on the reference density. Hence, the admissible step-size of the time integra-
tion for a surface-tension dominated flow problem can be much larger than obtained with the formulation of Hu and Adams
[6].
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4. Numerical examples

In the following section we validate our surface-tension model by comparison to analytic solutions of two-dimensional
problems for steady and unsteady problems. We demonstrate the capabilities of our method by simulating the breakup of a
three-dimensional drop in a shear flow. For all cases we use ghost particles to impose the boundary conditions, see [14]. The
mirror-particle technique is well suited for simple geometries with straight walls and allows for symmetry and no-slip con-
ditions. Except for the last numerical example we use symmetry conditions at the boundaries and enforce a Neumann
boundary condition for the pressure. Additionally, for walls we adjust the velocity of a mirrored ghost wall particle to
vvirtual ¼ 2vwall � vreal.
4.1. Square-droplet deformation

In our first test, we investigate the surface-tension driven deformation of an initially square droplet. We place a square
patch of fluid ‘‘1” with an edge length of lx ¼ ly ¼ 0:6 into a box of fluid ‘‘2” with a domain size of Lx ¼ Ly ¼ 1. The density of
both phases is q ¼ 1, and we use a dynamic viscosity of g ¼ 0:2. The surface-tension coefficient is set to a ¼ 1. Fig. 3(a) shows
the initial particle positions of the two fluids of same density. After t ¼ 1 a circular droplet is formed and the particles are at
rest, see Fig. 3(b).

From the Laplace-law we find that the pressure within the droplet must be higher than that of the surrounding fluid. In
two-dimensions the pressure drop across the interface must satisfy the condition
Dp ¼ a
R
¼ a

ffiffiffiffi
p
p

lx
; ð26Þ
where R is the final radius of the drop. In Fig. 4(a) the pressure profiles of two different initial square droplets of size lx ¼ 0:4
and 0.6 each with two different resolutions (3h ¼ 0:06 and 0.03) are plotted against the radial coordinate. The dotted lines
represent the analytic solutions for the two cases. The calculated pressure profiles agree well with the Laplace-law and con-
vergence is demonstrated for both cases. Note also the thinning of the transition region at the interface with increasing
resolution.

For our non-conservative surface-tension formulation we expect good stability properties with only small parasitic cur-
rents at the interface. Evidence is provided by the kinetic-energy evolution, Fig. 4(b), for an initially square droplet of size
lx ¼ 0:6 and two resolutions 3h ¼ 0:06 and 3h ¼ 0:03. As a reference, we also computed the same case with the method
of Hu and Adams [6], see the dashed line in the figure. At early stages, the surface-tension force produces interfacial motion
deforming the square droplet, which is reflected by the peak in the logarithmic kinetic energy plot. At approximately t ¼ 1 a
circular droplet is formed and the particles are nearly at rest, i.e. the kinetic energy is very low. The energy-decrease at later
times indicates the stability of the circular droplet configuration. Comparing our result with the simulations performed with
the conservative method, good agreement is found for both resolutions. Consequently, our method neither introduces nor
dissipates noticeable energy to a significant amount into the system. As the maximum velocity in the system at later times
is on the order of Oð10�3Þ for both methods, parasitic currents are of negligible magnitude.

We also tested the square-droplet deformation with different densities for the two phases. Fig. 5 shows the pressure drop
for density ratios ranging from Uq ¼ q1=q2 ¼ 0:001 to Uq ¼ 1000. These ratios represent the situation of an air bubble in
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water or a water droplet in air, respectively. Although the result is not as accurate as for the case with Uq ¼ 1, we find good
agreement with and convergence to the analytic solution. Note that over- or underestimation of the pressure drop depends
on the sign of the density gradient at the interface. This dependence can be explained by reference to the surface-tension
model in our method. As we bias the surface-tension force towards the heavy phase at the interface, the approximation error
implies an interface position slightly shifted towards the heavy phase.

4.2. Oscillating rod

A dynamic test case is the circular liquid-droplet oscillation under the action of capillary forces. Instead of starting from
an initially elliptic droplet we prescribe an initial velocity field
Ux ¼ U0
x
r0

1� y2

r0r

� �
exp � r

r0

� �
; ð27Þ

Uy ¼ �U0
y
r0

1� x2

r0r

� �
exp � r

r0

� �
ð28Þ
with U0 ¼ 10 and r0 ¼ 0:05 for the particles within the drop of radius R ¼ 0:2. The computational domain is a box of size
Lx ¼ Ly ¼ 1:0 and the droplet is placed at the center of the box. The densities of the liquid phase and the droplet are both
set to ql ¼ qd ¼ 1, the dynamic viscosities are gl ¼ gd ¼ 0:05 and the surface-tension coefficient between the two phases
is a ¼ 1. At the boundaries we apply no-slip wall boundary conditions. Fig. 6 shows the positions of the droplet particles
at t = 0.0, 0.08, 0.16 and 0.26.

To show convergence of our method we simulate the oscillating droplet with different resolutions of 900, 3600 and
14,400 particles. The result of these simulations is shown in Fig. 7(a), where we compare the position of the mass center
of the particles of the upper right-quarter section of the droplet.
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good agreement between the analytic expression and the simulations over the entire range of studied parameters and dem-
onstrate once again convergence of our method. As in Hu and Adams [6], the largest deviation from the theoretical values is
less than 5%.

This second test case is of special importance for our new surface-tension formulation. If the simple inter-particle-aver-
aged color gradient summation is used to obtain the curvature and normal direction, as in Hu and Adams [6], the artificial
sound speed and the time-step size are determined by the surface tension and the density ratio, which leads to a much smal-
ler Mach number (less than 0.05) and a much smaller time-step size than that obtained based on the maximum flow velocity.
For the density-weighted color-gradient formulation we find that we can relax the time-step criterion implied by the surface
tension (Eq. (25)) and use a suitable chosen reference density instead of the minimum density as threshold. In this example
we set qref ¼ 0:1qmax which allows for a 10 times larger time-step as compared to qmin. The theoretical relation between the
surface tension and the oscillation period can be computed accurately with a more reasonable Mach number (0.1) and sig-
nificantly better efficiency, see Fig. 7(b).

4.3. Drop in shear flow

We consider a circular drop in a shear flow with a density ratio of U ¼ 1. The drop of size R ¼ 1 is located in the middle of
a periodic rectangular channel of size Lx ¼ Ly ¼ 8. A velocity of 	u1 is applied to the no-slip wall boundaries. The capillary
number Ca and the Reynolds number Re are defined by the shear rate G ¼ 2u1=Ly, i.e.
Fig. 8.
numbe
Ca ¼ GgR
a

; Re ¼ qGR2

g
: ð29Þ
In the range of parameters where a steady solution is obtained, the flow shear deforms the droplet to an ellipsoid, balancing
the viscous stresses and the surface tension. As a measure of the deformation the parameter D ¼ ða� bÞ=ðaþ bÞ is used,
which is a ratio of the transverse drop diameter a and conjugate diameter b.

Fig. 8(a) shows a snapshot of the simulation with the parameters Ca ¼ 0:2; Re ¼ 1:0 and a viscosity ratio of k ¼ 100. The
calculation was performed with a smoothing length 3h ¼ 0:25, i.e. a total of 9216 particles. The deformation parameter is
calculated with the least-square ellipse fitting method of Fitzgibbon et al. [4]. A comparison of the calculated deformations
and the analytic predictions using the small-deformation theory suggested by Taylor [17] is plotted in Fig. 8(b). For both the
viscosity ratios of k ¼ 1 and 100 we find good agreement with theory in the range of small capillary numbers. Contrary to Hu
and Adams [8], the deformation parameter is slightly overpredicted, but the absolute deviation from theory using the same
number of particles is smaller.

As last case we simulate a complex multi-phase problem with topology change of the interface geometry to show the
capabilities of our method for technically relevant flows. For this purpose we place a three-dimensional drop of size
R ¼ 1 at the center of a computational domain of size 8R� 4R� 4R and move the upper and lower wall boundaries with
the velocity u1 ¼ 	2. Periodic boundary conditions are applied at the remaining boundaries. The shearing fluid and the drop
phase have a density and viscosity ratio of Uq ¼ k ¼ 1. The other fluid properties are chosen to correspond to Re ¼ 1 and
Ca ¼ 0:25. Fig. 9 shows the steady-state solution at T ¼ 25 for a simulation with a resolution of 3h ¼ 0:15, i.e. a total of
1,024,000 particles. The left half of the droplet is represented with particles, the right half shows the extracted surface con-
tour using pv-meshless [19]. The surrounding bulk phase is shown by blue particles. At Ca ¼ 0:25 the shear forces are mod-
erate compared to the surface-tension forces and the droplet deforms to a steady ellipsoid. We simulated 80,000 time-steps
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Fig. 9. Three-dimensional drop deformation in shear flow at Re ¼ 1; Ca ¼ 0:25 and a resolution of 3h ¼ 0:15 at T ¼ 25.

Fig. 10. Drop deformation and breakup in shear flow at Re ¼ 1 and different capillary numbers at T ¼ 25 (left figure) and T ¼ 50 (right figure). After the
breakup into two main daughter drops, the liquid thread in the middle is still unstable and separates two further small droplets.
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of this example on a SGI Altix 4700 platform using 64 processors within about 80 h. The performance of the implemented
SPH-client using the PPM library is about 2 � 10�4 s/time-step/particle, which is comparable to the performance for a basic
SPH code without surface-tension effects, see Sbalzarini et al. [15].

When the capillary number is increased, i.e. the surface-tension forces become less dominant, the capillary force is not
strong enough to balance the viscous stress and no steady drop deformation is obtained. In Fig. 10 we show the results of
the simulations with capillary numbers ranging from Ca ¼ 0:25 to Ca ¼ 0:4 in a channel of size 18R� 4R� 4R with a reso-
lution of 3h ¼ 0:3. As a reference we show again the last example with Ca ¼ 0:25 in Fig. 10(a). Above the critical state, see
also Li et al. [9], droplet breakup occurs and produces two droplets, see Fig. 10(b). Further increasing the capillary number,
the neck is more pronounced before breakup, and a very small third droplet between the other droplets is generated in
Fig. 10(c). For high capillary numbers, the so-called ‘‘dumbbell” shape has a very long neck and a more complex breakup
process occurs. In Fig. 10(d) we show that at Ca ¼ 0:4 five droplets occur.

This example shows quite clear one advantage of SPH (and particle methods in general) compared to grid-based methods
in studying multi-phase problems: once the studied problem is initialised, by its nature the method incorporates interface
phenomena adaptively, i.e. the change of the interface geometry or even separation and merging are handled without the
need of special numerical algorithms.

5. Concluding remarks

In this work, we present a novel surface-tension method for multi-phase SPH. With a new reproducing divergence
approximation, we propose a new formulation for the surface curvature and modify the color gradient summation with a
density weighting. While the new formulation has comparable accuracy as the formulation of Hu and Adams [6], it can
achieve much faster computation for problems with large density ratio. Although demonstrated here only for the case of
two different fluids distinguished by a single color function, we emphasize that an extension to handle more complex mul-
ti-phase problems is straightforward. We have validated our method with analytic solutions for steady equilibrium droplets,
capillary waves and drop deformations in shear flow. We demonstrate convergence of our method and good stability prop-
erties even for long time simulations. The simulation of a complex three-dimensional problem shows the capabilities of our
method in handling multi-phase problems with complex interfaces.
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